Missile Life Extension (MLE)
Accelerated Storage Life Test (ASLT)

Robert Sprick
Milena Krasich
Thomas Shovlin
Outline

• MLE Program Summary
• Task Description
• Accelerated Storage Life Test Plan
• Physics of Failure Approach
• Storage Locations and Thermal Profiles
• Transforming Thermal Use Profiles into One
• Thermal Cycling, Vibration and Handling Drop
• Accelerated Storage Life Test Design

• Life Test Articles
• Accelerated Storage Life Test Flow
• ASLT results
• ASLT Trend Data
• PMLE Summary
• References
MLE Program Summary

• Study Goal
 – Define additional missile component replacement, maintenance, or refurbishment needed related to Recertification of missiles which will be in service beyond 30 years of natural age

• MLE Program consists of two main elements:
 – Component Life Analysis on all Missile components based on available data extrapolated to 45 year life
 • Many analyzed components are carried into the follow-on designs

• Forebody / Control Section Assembly (CSA) Accelerated Life Testing
 – Temperature Cycling, Vibration and Shock to simulate 22 years of additional life on the provided Government Furnished Equipment (GFE)
Task Description

• Storage life of missiles was considered to be 30 years
 – At the end of the storage period, most of the missiles are found in good working condition

• Great savings of resources and material cost would result if the missiles would be found capable of surviving a much longer storage period – current storage duration extended by 10 years
 – A program containing multiple activities, analyses and tests has been undertaken
 – A considerable part of this program was performance of an accelerated reliability demonstration test to demonstrate missile capability to withstand 45 years of storage
 – If successful, the missiles could be stored for 45 years and be fully operational
 – Reliability Goal was based upon XX out of 100 missiles operational after the storage
Accelerated Storage Life Test Plan

• Accelerated Storage Life Test (ASLT) objective
 – Estimate probability of survival as a function of storage duration for up to 45 years
 • Simulates cumulative damage produced by storage and transportation stresses during and up to extended storage life
 – Recommend measures necessary to extend storage life up to 45 years

• Accelerated Testing - Temperature:
 – Extend received GFE life to forty-five years of climatic stresses via thermal cycling and thermal exposure
 – High and Low temperatures and number of cycles selected to simulate cumulative damage

• Accelerated Testing - Vibration/Shock:
 – Extend received GFE life to forty-five years of transportation/handling stresses
 • 50,000 miles of transportation vibration
 • Vibration: Truck (fixed cargo)
 • Shock: Handling
Physics of Failure Approach

• Determine environmental and dynamic stresses on missiles during the storage period
 – During storage period, besides being stored, the missiles are transported using different means of transportation, loaded and unloaded
 – The four main stresses are therefore:
 • Thermal exposure to high and low temperatures
 – Diurnal in cold and hot climate
 – Nocturnal in hot and cold climate
 • Thermal cycling
 – Between the diurnal and nocturnal temperatures
 • Transportation vibration
 • Drop shock
• Reliability allocated to each of the four stresses: $0.YY = (0.XX^{1/4})$
Transforming Thermal Use Profiles into One

• Transform all high temperature exposures into one high level
 – The temperature levels higher than freezing of nocturnal and lower diurnal temperatures will be normalized to the level of the higher diurnal temperature using Arrhenius thermal relationship.
 – This final temperature will be accelerated in test and its overall duration will be distributed over the high temperature period of the thermal cycling

\[
t_{H_{\text{Total}}} = t_H + \sum t_i \cdot e^{- \frac{E_a}{k_B} \left(\frac{1}{T_i+273} - \frac{1}{T_H+273} \right)}
\]

• Low temperature exposure
 – The temperatures in arctic climate corresponding to freezing temperatures will be normalized to the lower nocturnal temperature, its stress accelerated by applying a significantly lower low test temperature.
 – This exposure will also be distributed over the determined number of test thermal cycles

\[
t_{L_{\text{Total}}} = t_L + \sum t_i \cdot e^{- \frac{E_a}{k_B} \left(\frac{1}{T_i+273} - \frac{1}{T_L+273} \right)}
\]
Thermal Cycling, Vibration and Handling Drop

• Thermal Cycling
 – The overall number of thermal cycles will be equal to the number of diurnal/nocturnal cycles over the storage period. For Y years of storage, the number of thermal cycles is:
 – $N_{TC}(Y) = 365 \times Y$
 – $N_{TC}(45) = 16,425$ thermal cycles

• Vibration Exposure
 – Vibration stress is applied through transportation of the missiles in trucks. Requirements are as follows:
 • Duration: 50,000 miles total
 • Vibration level: as described in MIL-STD-810G, for the secured load transportation [Root mean square acceleration (GRMS)]

• Handling Shock
 – It can be conservatively assumed that a missile is dropped during the following operations:
 – Transportation loading = 2 times total
 – Assumed average number of test handling in life = 6 times total
Accelerated Storage Life Test Design

• Total missile reliability in storage is the product of its reliability regarding each of the stresses:

\[R_{\text{Item}}(\text{Stress}, t_0) = \prod_{i=1}^{S} R_{\text{Item}}(\text{Stress}_i, t_i) \]

• \(S \) = number of stresses
• \(t_0 \) = time for reliability calculation (may be between the scheduled maintenances)
• \(t_i \) = duration of time in each individual stress

• Reliability is allocated (for simplicity) to each of the stress as:

\[
R_{\text{Item}}(t_0) = \left(R_{\text{Stress}_i}(t_i) \right)^S \\
R_{\text{Stress}_i}(t_i) = \frac{S}{\ln \left(R_{\text{Item}}(t_0) \right)}
\]

• Average failure rate or failure frequency is then:

\[
\lambda_{a, \text{Missile}}(\text{Stress}, t_0) = -\frac{\ln \left[R_{\text{Missile}}(\text{Stress}, t_0) \right]}{t_0}
\]

• The test is to be designed to determine the following:
 – Reliability or probability of missile being capable to accomplish its expected mission up to the end of 45-year storage time.
 – Expected life of the limited life items
 – Maintenance actions necessary for realization of the missile probability of survival for the desired storage period.
Accelerated Storage Life Test Design

• To validate reliability, the test duration needs to exceed the required life (45 years) so that the test duration is: \(k \times t_0 \)

 – Multiplier \(k \) is determined from the reliability requirement (IEC 62506):

 \[
 R_i(t_0, k, \mu_{L_i}) = \Phi \left[\frac{k - 1}{\sqrt{(a \cdot k)^2 + (b)^2}} \right]
 \]

• Where:

 • \(a, b \) = multipliers for the respective mean strength and load cumulative degradation values (non accelerated stress durations) to obtain the respective standard deviations

 – Reliability curve is plotted as a function of variable \(k \), and its required value is then determined from the required reliability

 – Failure rate in the accelerated test and the test acceleration are:

 \[
 \lambda_A = A_{\text{Test}} \cdot \lambda_0 = \sum_{i=1}^{S} \left(A_i \cdot \lambda_i \right)
 \]

 \[
 A_{\text{Test}} = \sum_{i=1}^{S} \left(A_i \cdot \left[\frac{1}{S} \cdot \frac{\lambda_0 \cdot t_i}{\lambda_0} \right] \right)
 \]

 – Acceleration factor for individual stresses are determined using standard single stress accelerations. Thermal cycling and dwell are combined in test
Life Test Articles

- Government Provided Test Assets
 - Four Forebodies
 - Four Control Section Assemblies (CSA)
 - Remaining missile components have scheduled replacement during recertification – Limited Life Components (LLCs)
- Periodic performance testing and inspection throughout accelerated life test
- Perform Root Cause analysis for incurred failures
- Analyze test failure data to determine:
 - Failure mode probability/frequency and severity
 - Correlation between field data analysis and the life test results
 - Recommend mitigation measures for life extension
Accelerated Storage Life Test Flow

- Overall process for ASLT activities, which results in a test report
ASLT results - Forebody

- Testing executed in four Test Quarters (TQ)
 - Each TQ represented 5.5 years
 - Functional test before and after each TQ
 - TQ4 is 0.8 years longer due to restart after test chamber fan failure

<table>
<thead>
<tr>
<th></th>
<th>Initial Age</th>
<th>TQ1</th>
<th>TQ2</th>
<th>TQ3</th>
<th>TQ4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Dates (2011)</td>
<td>7/7</td>
<td>8/29</td>
<td>10/3</td>
<td>12/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>20-23</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>6.3*</td>
<td>43-46</td>
</tr>
</tbody>
</table>
ASLT results - CSA

- ASLT plan accelerates CSA ages by 22 years to 45 years in four TQs
 - Ten component and/or performance failures reported in three of the four test quarters (2nd quarter failure free)
 - Conducted failure mode analysis and mission criticality and life assessments
- Identified components as high risk to support 45 years

<table>
<thead>
<tr>
<th>Start Dates (2012)</th>
<th>Initial Age</th>
<th>TQ1</th>
<th>TQ2</th>
<th>TQ3</th>
<th>TQ4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>23 - 25</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>45-47</td>
</tr>
</tbody>
</table>
Accelerated Storage Life Test Trend Data

• Trend plots developed for multiple test parameters reported in the Parametric Trend Analysis annual report
 – Quarterly ASLT Forebody data mapped to accelerated time

• Sample Forebody parameter indicates the acceleration testing had an effect on the parametric values

ASTR 2015, Sep 9 – 11, Cambridge, MA
CSA Trend Data

- Each of the CSA parameters stayed within specification limits over the 45 year data set.
- Sample parameter where Gain increases through test quarters showing influence of ALT testing however data remains under the upper limit at the end of 45 equivalent years.
MLE Summary

• ASLT test results were combined with Component Life Analysis
 – Objective: Determine presence of wear out mechanisms and degradation during the storage periods which may result in operational missile failures
 – Compiled storage life from missile inventory, material properties, and failures during ASLT to develop component risk assessments
 – Subsystem risk assessment was evaluated based upon roll-up of components to identify additional items to add/evaluate to the LLC list
• Recommended and Gov’t approved missile recertification beyond 30 years for 45 year life
 – Cost savings compared to buying new missiles
References

- IEC 62506, “Methods for products accelerated testing”
- Additional references supplied upon request
Speaker’s Bibliography

- Robert Sprick
- Robert_S_Sprick@Raytheon.com
- Robert Sprick is a Senior Engineer II at Raytheon Integrated Defense Systems (IDS), Whole Life Availability Engineering (WLAЕ) department, Reliability, Availability, Maintainability Engineering Analysis (RAMAE) section
- He holds a BS in Computer Engineering and MS in Computer Science with Computer Engineering Emphasis from the University of Nebraska-Lincoln. He is also a member of IEEE Reliability Society